О радиодеталях с разборки (начинающим)

Рейтинг:  0 / 5

Звезда не активнаЗвезда не активнаЗвезда не активнаЗвезда не активнаЗвезда не активна
 

Иванов А.
Радиодетали стоят денег, зачастую, немалых. Именно поэтому многие радиолюбители используют в своих поделках детали с разборки старой радиоаппатуры. Конечно, такой способ добычи радиодеталей выгоден с точки зрения себестоимости, но ведь нужно учесть и то, что разбираемая радиоаппаратура была неисправной. А это значит, что любой радиоэлемент, выпаянный из негодной платы, может быть неисправным, он может быть даже той самой причиной, по которой аппарат сдали в разборку. А потом эта деталь попадает в радиолюбительскую конструкцию, которая ну никак не хочет работать...
Впрочем, даже исправные детали можно повредить в процессе демонтажа. Чтобы избежать таких неприятностей необходимо перед монтажом проверить хоты бы на работоспособность, все используемые детали взятые с разборки, а так же, избегать нежелательных воздействий на детали в процессе демонтажа.

И так, следует начинать осмотр уже при демонтаже. Не имеет смысла выпаивать детали с обгоревшей краской или механически поврежденным корпусом, а так же, детали от которых воняет гарью, и детали, со следами перепайки.
У многих современных электролитических конденсаторов есть насечки на донышке, которые лопаются или напухают при пробое конденсатора. Это хорошо заметно. Такие конденсаторы тоже нет смысла выпаивать.
Намоточные детали (катушки, трансформаторы) с оплавленными каркасами и потемневшей изоляцией тоже не стоит выпаивать.
Детали в стеклянных корпусах не должны иметь трещин. Чаще всего при неаккуратном демонтаже у них появляются трещины в районе входа выводов в корпус. Эти трещины нарушают герметичность, внутрь попадает воздух, влага. Если деталь вакуумная то нарушается вакуум, и она становятся не пригодной, либо попадает в «группу риска», так как
трещина на стекле в любой момент может увеличиться и достигнуть критической величины.
Переходя к демонтажу нужно помнить одну важную вещь, - все радиодетали боятся перегрева и механической нагрузки. Продолжительный разогрев паяльником, плюс, усилие при вытаскивании детали из отверстия в плате может привести к её повреждению. Не грейте одну пайку дольше 5 секунд за один подход.
При распайке плат очень хорошо пользоваться толстым массивным металлическим пинцетом. Берете деталь этим пинцетом за вывод, который выпаиваете, и осторожно, прогревая пайку, этот вывод вытаскиваете. Пинцет не только помогает вытащить вывод из отверстия в плате, не давая нагрузки на корпус, но и служит теплоотводом, снижающим нагрев детали. Особенно сильно боятся перегрева полупроводниковые приборы, - транзисторы, диоды, микросхемы, а так же многие типы конденсаторов. Например, у дисковых конденсаторов может отпаяться вывод от обкладки, а у электролитических может вскипеть электролит. Резисторы более стойки к перегреву, но и у них есть свой разумный предел прочности.
А теперь перейдем собственно к проверке. Начнем с резистора. Для этого потребуется обычный мультиметр, например или любой широкодиапазонный омметр. После внимательного осмотра резистора нужно измерить его сопротивление. Оно не обязательно должно точно соответствовать маркировке, но и слишком сильно отличаться тоже не должно. Сопротивление должно быть в пределах класса точности.
У переменных и подстроечных резисторов, наиболее частым бывает нарушение контакта между подвижным контактом и резистивной поверхностью. Это может быть следствием износа или окисления, либо поломки движущегося контакта. При вращении вала резистора показания прибора должны изменяться плавно, без резких рывков и изменений показаний в обратную сторону. Например, если при вращении вала резистора в одну сторону показания прибора плавно росли, а потом в какой-то момент уменьшились, это говорит, что в данном месте резистивного элемента нарушен контакт.

Проверять конденсаторы желательно мультиметром, измеряющим емкость, в этом случае ваши действия будут примерно такими как при проверке резисторов, - просто измеряйте емкость и проверяйте на соответствие указанному на корпусе конденсатора.
Впрочем, в поверке конденсаторов может помочь и простой омметра. Неэлектролитические конденсаторы с его помощью можно проверить только на наличие короткого замыкания. Прибор должен показывать бесконечное сопротивление. Конечно, на обрыв таким способом неэлектролитический конденсатор проверить нельзя. А вот электролитический можно. Переключите прибор на измерение большого сопротивления, и подключите щупы к выводам конденсатора соблюдая полярность. Прибор сначала покажет какое то минимальное сопротивление, а потом его показания станут постепенно увеличиваться, и в конечном итоге достигнут бесконечного сопротивления. Чем больше емкость конденсатора, тем медленнее будет происходить этот процесс. После проверки замкните выводы конденсатора каким то металлическим предметом чтобы разрядить его.
Проверка диодов и транзисторов предусмотрена у большинства мультиметров. Диод отличается односторонней проводимостью. Для его проверки нужно переключить мультиметр в положение проверки диодов или измерения сопротивления. Затем, подключаете щупы прибора к проверяемому диоду, сначала в одной полярности, а потом поменяв местами выводы, к которым подключали. В прямом положении прибор будет показывать некоторое сопротивление (или напряжение падения, если у прибора есть режим теста диодов), а в обратном - бесконечное сопротивление.
Таким же образом можно проверить и светодиоды, только в процессе проверки светить они не будут, так как ток очень низок. Но определить исправность и полярность выводов можно.
Если у проверяемого светодиода прямое напряжение падения больше 2V мультиметром в режиме проверки диодов проверить его будет нельзя, так как он показывает до 2V.
Впрочем, светодиод можно проверить и на свечение. Возьмите источник постоянного тока напряжением не более 5V и через резистор 1-2 кОм подключайте к выводам светодиода. Но только обязательно через резистор! Резистор ограничивает ток через светодиод, без него светодиод можно уничтожить.
Некоторые стабилитроны, симметричные или высоковольтные тоже не будут диагностироваться.
Показания очень низкие в обоих направлениях говорят о пробое диода. Бесконечно высокие показания в обоих направлениях говорят либо об обрыве диода, либо о том, что это особый диод, например, симметричный стабилитрон или высоковольтный диод, и его прямое напряжение падения выше 2V.
Для проверки транзисторов у многих мультиметров есть соответствующее гнездо, в которые нужно подключить выводы транзистора согласно цоколевке и структуре.
Но и без такового гнезда можно хотя бы ориентировочно проверить транзистор на работоспособность, переключив мультиметр в режим проверки диодов. Для этого нужно представить себе электронно-дырочные переходы транзистора в упрощенном виде, как два диода, соединенных анодами (если N-P-N) или катодами (если P-N-P). Точка соединения - база, а два других вывода - эмиттер и коллектор. Проверяете транзистор как два диода. К сожалению, такой способ проверки не позволяет отличить эмиттер от коллектора, но заведомо неисправный транзистор (с обрывом или пробоем одного или обоих переходов) обнаружить можно.

Оставлять комментарии могут только зарегистрированные пользователи

Яндекс.Метрика Рейтинг@Mail.ru Счетчик тИЦ и PR